32 research outputs found

    Applicative Bidirectional Programming with Lenses

    Get PDF
    A bidirectional transformation is a pair of mappings between source and view data objects, one in each direction. When the view is modified, the source is updated accordingly with respect to some laws. One way to reduce the development and maintenance effort of bidirectional transformations is to have specialized languages in which the resulting programs are bidirectional by construction---giving rise to the paradigm of bidirectional programming. In this paper, we develop a framework for applicative-style and higher-order bidirectional programming, in which we can write bidirectional transformations as unidirectional programs in standard functional languages, opening up access to the bundle of language features previously only available to conventional unidirectional languages. Our framework essentially bridges two very different approaches of bidirectional programming, namely the lens framework and Voigtlanderā€™s semantic bidirectionalization, creating a new programming style that is able to bag benefits from both

    A novel G-quadruplex-forming GGA repeat region in the c-myb promoter is a critical regulator of promoter activity

    Get PDF
    The c-myb promoter contains multiple GGA repeats beginning 17 bp downstream of the transcription initiation site. GGA repeats have been previously shown to form unusual DNA structures in solution. Results from chemical footprinting, circular dichroism and RNA and DNA polymerase arrest assays on oligonucleotides representing the GGA repeat region of the c-myb promoter demonstrate that the element is able to form tetrad:heptad:heptad:tetrad (T:H:H:T) G-quadruplex structures by stacking two tetrad:heptad G-quadruplexes formed by two of the three (GGA)4 repeats. Deletion of one or two (GGA)4 motifs destabilizes this secondary structure and increases c-myb promoter activity, indicating that the G-quadruplexes formed in the c-myb GGA repeat region may act as a negative regulator of the c-myb promoter. Complete deletion of the c-myb GGA repeat region abolishes c-myb promoter activity, indicating dual roles of the c-myb GGA repeat element as both a transcriptional repressor and an activator. Furthermore, we demonstrated that Myc-associated zinc finger protein (MAZ) represses c-myb promoter activity and binds to the c-myb T:H:H:T G-quadruplexes. Our findings show that the T:H:H:T G-quadruplex-forming region in the c-myb promoter is a critical cis-acting element and may repress c-myb promoter activity through MAZ interaction with G-quadruplexes in the c-myb promoter

    A Practitionerā€™s Approach to Normalizing XQuery Expressions

    No full text

    Program specialization vs. program composition

    No full text

    Query optimization in the CROQUE project

    No full text

    Running Head: Backward forces on anaphase chromosomes

    Get PDF
    We describe the general occurrence in animal cells of elastic components (ā€œtethersā€) that connect individual chromosomes moving to opposite poles during anaphase. Tethers, originally described in crane-fly spermatocytes, produce force on chromosome arms opposite to the direction the anaphase chromosomes move. In crane-fly spermatocytes tethers function to coordinate movements between chromosomes. Their presence in a broad range of cells suggests that they may be important in coordinating movements between chromosomes to ensure normal segregation. Tethers are previously unrecognised force-producing components of general mitotic mechanisms and need to be accounted for in general models of mitosis in terms of forces on chromosomes and in terms of what their roles might be, possibly in coordinating chromosome movements during mitosis
    corecore